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ABSTRACT 

The purpose of this paper  is to prove that  every semigroup with the zero 

is an orthogonal  sum of orthogonal indecomposable semigroups. We prove 

that  the set of all 0-consistent ideals of an arbi trary semigroup with the 

zero forms a complete atomic Boolean algebra whose a toms are summands  

in the greatest orthogonal  decomposition of this semigroup. 

Throughou t  this paper,  Z + will denote the set of all positive integers and 

S = S O means tha t  S is a semigroup with the zero 0. If  S -- S °, we will write 0 

instead {0} and, if A is a subset of S, we will write A* = A - O ,  A ° = AUO, A f -- 

(S - A) °. For an element a of a semigroup S, J(a)  will denote the principal ideal 

of S generated by a. 

A lattice L is c o m p l e t e  if every nonempty  subset of L has a least upper  bound  

and a greatest  lower bound.  An  element a of a lattice L with the zero 0 is an 

a t o m  of L if a > 0 and there exists no x C L such tha t  a > x > 0. A complete 

Boolean algebra B is a t o m i c  if every element of B is the least upper  bound  of 

some set of a toms of B. If L is a distributive lattice with the zero and the unity, 

then the set of all elements of L having a complement  in L is a Boolean algebra 

which we call the g r e a t e s t  B o o l e a n  s u b a l g e b r a  of L. By Zd(S)  we denote the 

lattice of ideals of a semigroup S. For S -- S °, this is a distr ibutive lattice with 

the zero 0 and the unity S. 

A semigroup S = S O is an o r t h o g o n a l  s u m  of semigroups S~, ~ E Y, in 

nota t ion  S = E a E y S a  , if S~ ¢ 0, for all a C Y, S = [-J~ev S~ and S~ C~ S~ = 

S~S~ = SzS~  = 0, for all a , 3  E Y , a  ~ 3. In this case, the family 1) = 
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{S~[ a E Y} is an o r t h o g o n a l  d e c o m p o s i t i o n  of S and S~ are o r t h o g o n a l  

s u m m a n d s  of S or s u m m a n d s  in/9.  I f / )  and 13' are two orthogonal decom- 

positions of a semigroup S : S °, then we say that l) is g r e a t e r  t h a n / ) '  if each 

member of :/) is a ~ubset of some member of/Y. A semigroup S = S O is o r t h o g -  

ona l  i n d e c o m p o s a b l e  i f /9  = {S} is the unique orthogonal decomposition of 

S. 

For undefined notions and notations we refer to [3], [4] and [10]. 

Orthogonal decompositions of semigroups were first studied by E.S.Lyapin, 

[7], [8], and by S. Schwarz, [14]. Orthogonal sums of 0-simple semigroups and of 

null semigroups, and some special types of these, are considered by S. Schwarz, 

[14], and by A. H. Clifford and G. B. Preston, [4]. Various characterizations 

of orthogonal sums of completely 0-simple semigroups (i.e. of primitive regular 

semigroups) are given by P. S. Venkatesan, [12], [13], O. Steinfeld, [11], G. Lalle- 

ment and M. Petrich, [6], G. B. Preston, [9], and T. E. Hall, [5]. G. Lallement 

and M. Petrich, [6], also described orthogonal sums of semigroups having a prime 

zero ideal. 

The purpose of this paper is to prove that there exists a g r e a t e s t  

o r t h o g o n a l  d e c o m p o s i t i o n  of an arbitrary semigroup S = S o and to describe 

it. We consider 0-consistent ideals of an arbitrary semigroup S = S °, we prove 

that  they form an atomic Boolean algebra whose atoms form the greatest or- 

thogonal decomposition of S, and also, we prove that every complete atomic 

Boolean algebra is isomorphic to the Boolean algebra of 0-consistent ideals of 

some semigroup with zero. 

A subset A of a semigroup S is c o n s i s t e n t  if for x ,  y E S,  x y  E A implies 

x, y E A. A subset A of a semigroup S = S O is 0 - cons i s t en t  if A* is consistent. 

We will describe a role of 0-consistent ideals in orthogonal decompositions of 

semigroups with zero. 

It is obvious that a subset of a semigroup S is consistent if and only if its 

complement in S is an ideal. By this it follows that: 

LEMMA 1: The  following condit ions for an ideal A o f  a semigroup S = S O are 

equivalent.  

(i) A is O-consistent; 

(ii) A ~ is an ideal o f  S; 

(iii) A is an orthogonal s u m m a n d  o f  S.  
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It  is easy to prove the following three lemmas: 

LEMMA 2: Let A be a O-consistent ideal of a semigroup S = S O and let B be a 

O-consistent ideal of A. Then B is a O-consistent ideal of S. 

LEMMA 3: Let A~, i C I,  be a family of O-consistent ideals of a semigroup S = S °. 

Then Ai~r Ai and U~eI Ai are O-consistent ideals of S. 

A 0-consistent ideal A of a semigroup S -- S o is a p r o p e r  0 - c o n s i s t e n t  idea l  

of S if A ~ 0 and A ~ S. 

LEMMA 4: A semigroup S = S o is orthogonal indecomposable i f  and only i f  S 

has no proper O-consistent ideals. 

Let S = S °. For a C S, by A(a)  we will denote the intersection of all 0- 

consistent ideals of S containing a. By Lemma 3, A(a) is t h e  s m a l l e s t  0- 

c o n s i s t e n t  i dea l  o f  S c o n t a i n i n g  a, and we will call it p r i n c i p a l  0 - c o n s i s t e n t  

i dea l  o f  S g e n e r a t e d  b y  a. 

Let we introduce a relation 5 on S by 

aSb ~ A(a)  = A(b) (a,b e S). 

Then  5 is an equivalence on S, and by Aa we will denote the 5-class of S 

containing an element a E S. It  is clear tha t  A0 = A(0) = 0. 

LEMMA 5: I f  S = S O and a,b C S, then 

ab ~ 0 ~ A(ab) = A(a)  -- A(b). 

The principal 0-consistent ideals may be described also by another  way. Let T 

be a relation on a semigroup S = S °, defined by 

x T y ~-~ J (x )  • J (y)  ~ 0, for x, y • S*, 0 ~- 0. 

Clearly, ~- is reflexive and symmetric .  Let Y be the transit ive closure of T, and 

let T(a) = {x E S] x ~ a }  U 0, for a e S. 

LEMMA 6: Let S = S °, a • S. Then A(a)  = T(a). 

Proof." If x, y • S satisfy xy  • (T(a))*, then x y ~ a ;  since xy  • J ( xy )  M J(x )  M 

J(y) ,  then XTXy  and y r x y .  Therefore x ~ a  and y Y a ,  i.e. x , y  • (T(a))*. Thus,  

T(a) is a 0-consistent subset of S. 
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If for b E S, ab ~ O, then a~-ab (because ab E J(ab) fl J(a)),  and therefore 

ab E T(a). The same holds for ha, and thus, T(a) is an ideal of S. 

We obtained that T(a) is a 0-consistent ideal of S, containing a. Therefore, 

T(a) D_ A(a) by definition of A(a). 

Conversely, i f x  E A(a) a n d 0  ~ y E S s a t i s fyyTx ,  i.e. pyq = uxv ~ 0 for 

some u ,v ,p ,q  E S 1, then y E (A(a))*, because pyq = uxv E (A(a))* and A(a) is 

0-consistent. Therefore, T(a) C_ A(a), which proves the lemma. I 

LEMMA 7: Let a ~ 0 be an element of a semigroup S = S °. Then 

(A1) A(a) is orthogonal indecomposable; 

(A2) 

Proo~ (A1) If A(a) has a proper 0-consistent ideal A, then A and B = 

(A(a) - A) ° are proper 0-consistent ideals of A(a) and S (by Lemmas 1 and 

2), and a E A or a E B, which contradicts our hypothesis that A(a) is the small- 

est 0-consistent ideal of S containing a. Thus, A(a) has no proper 0-consistent 

ideals, so by Lemma 4, A(a) is orthogonal indecomposable. 

(A2) Let A ° = A a u 0 .  For x E Aa we obtain that A(x) = A(a), so x E 

A(x) = A(a), whence we obtain that Aa C A(a), i.e. A ° C_ A(a). 

Suppose that A ° ~ A(a). Then there exists x E A(a) such that x ~ 0 and 

A(x) # A(a). Hence, A(x) is a proper 0-consistent ideal of A(a), i.e. A(a) is 

not orthogonal indecomposable (Lemma 4), in contradiction to (A1). Therefore, 

= m 

THEOREM 1: The set ~ ( S )  of all O-consistent ideals of a semigroup S = S O is 

a complete atomic BooIean algebra and it is the greatest Boolean subatgebra of 

Zd(S). 

Fhrthermore, every complete atomic Boolean algebra is isomorphic to the 

Boolean algebra of O-consistent ideals of some semigroup with zero. 

Proof: By Lemma 3 we obtain that  ~ ( S )  is a sublattice of Zd(S),  and by Lemma 

1 we obtain that it is the greatest Boolean subalgebra of Zd(S).  By Lemma 3 

we have that ~ ( S )  is complete. By Lemmas 7 (A1) and 4 we have that nonzero 

principal 0-consistent ideals of S are atoms in ~ (S) .  Also, if A is a nonzero 

0-consistent ideal of S, then A = U{A(a)] a E A,a  ~ 0}, i.e. A is a union of 

atoms. Thus, ~B(S) is an atomic Boolean algebra. 

Further, let B be a complete atomic Boolean algebra and let Y be the set 

of atoms of B. To each a E Y let we associate an orthogonal indecomposable 
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semigroup Sa (for example  a 0-simple semigroup) such tha t  San  Sb = 0, if a ¢ b, 

where 0 is the common  zero of S a , a  E Y. Let S = E a e g S a .  It  is clear tha t  

Sa, a E Y, are all nonzero principal  0-consistent ideals of S, i.e. all the a toms  of 

~3(S). I t  is well known tha t  every complete  a tomic  Boolean algebra is isomorphic  

to the Boolean a lgebra  of all subsets of its a toms.  The  sets of a toms  of B and of 

~3(S) have the same cardinality,  therefore 13 and ~3(S) are isomorphic.  | 

THEOREM 2: Every semigroup S = S O has a greatest orthogonal decomposition; 

its summands are all the atoms of  ~ ( S ) .  

Proof'. By L e m m a s  5 and 7 we obta in  tha t  S is an or thogonal  sum of its nonzero 

principal  O-consistent ideals, which are or thogonal  indecomposable .  | 

COROLLARY 1: The following conditions on a semigroup S = S o are equivalent: 

(i) S is an orthogonal sum of  O-simple semigroups and of  null semigroups; 

(ii) every ideal of S is O-consistent; 

(iii) (Vx, y E S ) x y  ¢ 0 ~ x , y  E SxyS ;  

(iv) Zd(S)  is a Boolean algebra. 

Proof:  The  equivalence ( i i )~ ( iv )  follows by Theorems  1 and 2. The  rest is 

proved by A. H. Clifford and G. B. P res ton  in [4] and by S. Schwarz in [14]. 
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